Python 处理 JSON 数据
创建于 2024-12-03 /
27
字体:
[默认]
[大]
[更大]
JSON 文件以人类可读的格式将数据存储为文本。JSON 代表 JavaScript 对象表示法。Pandas 可以使用 read_json 函数读取 JSON 文件。
输入数据
通过将以下数据复制到文本编辑器(如记事本)中来创建 JSON 文件。使用 .json 扩展名保存文件,并选择文件类型为 所有文件 (*.*)。
{ "ID":["1","2","3","4","5","6","7","8" ], "Name":["Rick","Dan","Michelle","Ryan","Gary","Nina","Simon","Guru" ] "Salary":["623.3","515.2","611","729","843.25","578","632.8","722.5" ], "StartDate":[ "1/1/2012","9/23/2013","11/15/2014","5/11/2014","3/27/2015","5/21/2013", "7/30/2013","6/17/2014"], "Dept":[ "IT","Operations","IT","HR","Finance","IT","Operations","Finance"] }
读取 JSON 文件
pandas 库的 read_json 函数可用于将 JSON 文件读入 pandas DataFrame。
import pandas as pd data = pd.read_json('path/input.json') print (data)
当我们执行上述代码时,它会产生以下结果。
Dept ID Name Salary StartDate 0 IT 1 Rick 623.30 1/1/2012 1 Operations 2 Dan 515.20 9/23/2013 2 IT 3 Tusar 611.00 11/15/2014 3 HR 4 Ryan 729.00 5/11/2014 4 Finance 5 Gary 843.25 3/27/2015 5 IT 6 Rasmi 578.00 5/21/2013 6 Operations 7 Pranab 632.80 7/30/2013 7 Finance 8 Guru 722.50 6/17/2014
读取特定列和行
与上一章中我们已经看到的读取 CSV 文件的方法类似,在将 JSON 文件读取到 DataFrame 后,pandas 库的 read_json 函数也可用于读取某些特定列和特定行。 为此,我们使用名为 .loc() 的多轴索引方法。我们选择显示某些行的 Salary 和 Name 列。
import pandas as pd data = pd.read_json('path/input.xlsx') # Use the multi-axes indexing funtion print (data.loc[[1,3,5],['salary','name']])
当我们执行上述代码时,它会产生以下结果。
salary name 1 515.2 Dan 3 729.0 Ryan 5 578.0 Rasmi
将 JSON 文件读取为记录
我们还可以应用 to_json 函数以及参数将 JSON 文件内容读入单个记录。
import pandas as pd data = pd.read_json('path/input.xlsx') print(data.to_json(orient='records', lines=True))
当我们执行上述代码时,它会产生以下结果。
{"Dept":"IT","ID":1,"Name":"Rick","Salary":623.3,"StartDate":"1/1/2012"} {"Dept":"Operations","ID":2,"Name":"Dan","Salary":515.2,"StartDate":"9/23/2013"} {"Dept":"IT","ID":3,"Name":"Tusar","Salary":611.0,"StartDate":"11/15/2014"} {"Dept":"HR","ID":4,"Name":"Ryan","Salary":729.0,"StartDate":"5/11/2014"} {"Dept":"Finance","ID":5,"Name":"Gary","Salary":843.25,"StartDate":"3/27/2015"} {"Dept":"IT","ID":6,"Name":"Rasmi","Salary":578.0,"StartDate":"5/21/2013"} {"Dept":"Operations","ID":7,"Name":"Pranab","Salary":632.8,"StartDate":"7/30/2013"} {"Dept":"Finance","ID":8,"Name":"Guru","Salary":722.5,"StartDate":"6/17/2014"}
0 人点赞过