可微拟凸函数

创建于 2024-12-03 / 23
字体: [默认] [大] [更大]

定理

设 S 为 $mathbb{R}^n$ 中的非空凸集,且 $f:S ightarrow mathbb{R}$ 在 S 上可微,则 f 为拟凸当且仅当对于任何 $x_1,x_2 in S$ 且 $fleft ( x_1 ight )leq fleft ( x_2 ight )$,我们有 $\bigtriangledown fleft ( x_2 ight )^Tleft ( x_2-x_1 ight )leq 0$

证明

设 f 为拟凸函数。

设 $x_1,x_2 in S$ 使得 $fleft ( x_1 ight ) leq fleft ( x_2 ight )$

通过 f 在 $x_2, lambda in left ( 0, 1 ight )$处的可微性

$fleft ( lambda x_1+left ( 1-lambda ight )x_2 ight )=fleft ( x_2+lambda left (x_1-x_2 ight ) ight )=fleft ( x_2 ight )+\bigtriangledown fleft ( x_2 ight )^Tleft ( x_1-x_2 ight )$

$+lambda left | x_1-x_2 ight |alpha left ( x_2,lambda left ( x_1-x_2 ight ) ight )$

$Rightarrow fleft ( lambda x_1+left ( 1-lambda ight )x_2 ight )-fleft ( x_2 ight )-fleft ( x_2 ight )=\bigtriangledown fleft ( x_2 ight )^Tleft ( x_1-x_2 ight )$

$+lambda left | x_1-x_2 ight |alpha left ( x2, lambdaleft ( x_1-x_2 ight ) ight )$

但由于 f 是准凸的,$f left ( lambda x_1+ left ( 1- lambda ight )x_2 ight )leq f left (x_2 ight )$

$\bigtriangledown fleft ( x_2 ight )^Tleft ( x_1-x_2 ight )+lambda left | x_1-x_2 ight |alpha left ( x_2,lambda left ( x_1,x_2 ight ) ight )leq 0$

但 $alpha left ( x_2,lambda left ( x_1,x_2 ight ) ight ) ightarrow 0$ 等于 $lambda ightarrow 0$

因此,$\bigtriangledown fleft ( x_2 ight )^Tleft ( x_1-x_2 ight ) leq 0$

设对于 $x_1,x_2 in S$ 和 $fleft ( x_1 ight )leq fleft ( x_2 ight )$,$\bigtriangledown fleft ( x_2 ight )^T left ( x_1,x_2 ight ) leq 0$

证明 f 是拟凸的,即 $fleft ( lambda x_1+left ( 1-lambda ight )x_2 ight )leq fleft ( x_2 ight )$

矛盾证明

假设存在一个 $x_3= lambda x_1+left ( 1-lambda ight )x_2$,使得对于某个 $ lambda in left ( 0, 1 ight )$,$fleft ( x_2 ight )< f left ( x_3 ight )$

对于 $x_2$ 和 $x_3,\bigtriangledown fleft ( x_3 ight )^T left ( x_2-x_3 ight ) leq 0$

$Rightarrow -lambda \bigtriangledown fleft ( x_3 ight )^Tleft ( x_2-x_3 ight )leq 0$

$Rightarrow \bigtriangledown fleft ( x_3 ight )^T left ( x_1-x_2 ight )geq 0$

对于 $x_1$ 和 $x_3,\bigtriangledown fleft ( x_3 ight )^T left ( x_1-x_3 ight ) leq 0$

$Rightarrow left ( 1- lambda ight )\bigtriangledown fleft ( x_3 ight )^Tleft ( x_1-x_2 ight )leq 0$

$Rightarrow \bigtriangledown fleft ( x_3 ight )^T left ( x_1-x_2 ight )leq 0$

因此,从上述方程式可知, $\bigtriangledown fleft ( x_3 ight )^T left ( x_1-x_2 ight )=0$

定义 $U=left { x:fleft ( x ight )leq fleft ( x_2 ight ),x=mu x_2+left ( 1-mu ight )x_3, mu in left ( 0,1 ight ) ight }$

因此我们可以找到 $x_0 in U$ 使得 $x_0 = mu_0 x_2= mu x_2+left ( 1- mu ight )x_3$,其中 $mu _0 in left ( 0,1 ight )$ 最接近 $x_3$ 和 $hat{x} in left ( x_0,x_1) ight )$,根据均值定理,

$$ffrac{fleft ( x_3 ight )-fleft ( x_0 ight )}{x_3-x_0}= \bigtriangledown fleft ( hat{x} ight )$$

$$Rightarrow fleft ( x_3 ight )=fleft ( x_0 ight )+\bigtriangledown fleft ( hat{x} ight )^Tleft ( x_3-x_0 ight )$$

$$Rightarrow fleft ( x_3 ight )=fleft ( x_0 ight )+mu_0 lambda fleft ( hat{x} ight )^T left ( x_1-x_2 ight )$$

由于$x_0$是$x_1$和$x_2$的组合,且$fleft(x_2 ight)< fleft(hat{x} ight)$

重复起始步骤,$\bigtriangledown f left(hat{x} ight)^T left(x_1-x_2 ight)=0$

因此,结合上述方程,我们得到:

$$fleft(x_3 ight)=fleft(x_0 ight)leq fleft(x_2 ight)$$

$$Rightarrow fleft(x_3 ight)leq fleft(x_2 ight)$$

因此,矛盾。

示例

步骤 1 − $fleft ( x ight )=X^3$

$设 f left ( x_1 ight )leq fleft ( x_2 ight )$

$Rightarrow x_{1}^{3}leq x_{2}^{3}Rightarrow x_1leq x_2$

$\bigtriangledown fleft ( x_2 ight )left ( x_1-x_2 ight )=3x_{2}^{2}left ( x_1-x_2 ight )leq 0$

因此,$fleft ( x ight )$是准凸的。

步骤 2 − $fleft ( x ight )=x_{1}^{3}+x_{2}^{3}$

设 $hat{x_1}=left ( 2, -2 ight )$ 且 $hat{x_2}=left ( 1, 0 ight )$

因此,$fleft ( hat{x_1} ight )=0,fleft ( hat{x_2} ight )=1 Rightarrow fleft ( hat{x_1} ight )setminus < f left ( hat{x_2} ight )$

因此,$\bigtriangledown f left ( hat{x_2} ight )^T left ( hat{x_1}- hat{x_2} ight )= left ( 3, 0 ight )^T left ( 1, -2 ight )=3 >0$

因此 $fleft ( x ight )$ 不是拟凸的。



0 人点赞过